Reversible Reactions Worksheet Objectives

- Predict changes in the equilibrium position due to changes in concentration, temperature, and pressure
- Write the equilibrium-constant expression for a reaction and calculate its value from experimental data

Key Terms

- reversible reactions
- Le Châtelier's principle
- chemical equilibrium
- equilibrium constant (K_{eq})
- equilibrium position

Key Equation

• $K_{eq} = \frac{[C]^c \times [D]^d}{[A]^a \times [B]^b}$ When $aA + bB \Longrightarrow cC + dD$

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

In principle, all reactions are $\frac{1}{1}$. That is, reactants go to	1.
2 in the 3 direction and products go to 4 in	2
the <u>5</u> direction.	3.
The point at which the rate of conversion of6 to	4.
•	
7 and vice versa is equal is the position of 8. The	5
$\underline{}$ of a reversible reaction, K_{eq} , is useful for determining the	6
position of equilibrium. It is essentially a measure of the10	7
of products to reactants at equilibrium. The direction of change in	8.
the position of equilibrium may be predicted by applying	9
11 principle.	10.
	11.